Innovotek -News & BLOG

A blog about the news of the latest technology developments, breaking technology news, Innovotek Latest news and information tutorials on how to.

  • Home
    Home This is where you can find all the blog posts throughout the site.
  • Categories
    Categories Displays a list of categories from this blog.
  • Bloggers
    Bloggers Search for your favorite blogger from this site.
  • Login
    Login Login form

Posted by on in IC Design

b2ap3_thumbnail_AAEAAQAAAAAAAAPSAAAAJDJhZGFjZTUyLTZhYmItNDFiNC1hZGU1LWFlODRjZmRiODI5YQ.jpgImplantable medical devices have been around for decades. Early on, most of the established applications for medical devices focused on cardiac rhythm management. Such devices were used to treat irregular heart rhythms, such as bradycardia (beating too slowly) or tachycardia (beating too fast).

Alternatively, today’s implantable circuits provide therapy to treat numerous conditions. New applications in neurological stimulation can be used to treat sleep apnea, pain management, Parkinson’s disease, epilepsy, bladder control, gastrointestinal disorders, numerous autoimmune diseases, and psychological disorders, such as obsessive compulsive disorder (OCD). Meanwhile, implantable systems can now provide precise dosage and interval delivery of drugs to treat patients while minimizing side effects.

With the ever-increasing clinical need for implantable devices comes the continuous flow of technical challenges. As with commercial portable products, implantable devices share the same need to reduce size, weight, and power (SWaP). Thus, the need for device integration becomes imperative. There are many challenges when creating an implantable medical device.

...
Hits: 1271
Rate this blog entry:
2

Posted by on in IC Design

b2ap3_thumbnail_8430-demo-board---web.pngDigital circuits are circuits dealing with signals restricted to the extreme limits of zero and some full amount. This stands in contrast to analog circuits, in which signals are free to vary continuously between the limits imposed by power supply voltage and circuit resistances. These circuits find use in “true/false” logical operations and digital computation.

The circuits in this chapter make use of IC, or integrated circuit, components. Such components are actually networks of interconnected components manufactured on a single wafer of semiconducting material. Integrated circuits providing a multitude of pre-engineered functions are available at very low cost, benefitting students, hobbyists and professional circuit designers alike. Most integrated circuits provide the same functionality as “discrete” semiconductor circuits at higher levels of reliability and at a fraction of the cost.

Circuits in this chapter will primarily use CMOS technology, as this form of IC design allows for a broad range of power supply voltage while maintaining generally low power consumption levels. Though CMOS circuitry is susceptible to damage from static electricity (high voltages will puncture the insulating barriers in the MOSFET transistors), modern CMOS ICs are far more tolerant of electrostatic discharge than the CMOS ICs of the past, reducing the risk of chip failure by mishandling. Proper handling of CMOS involves the use of anti-static foam for storage and transport of IC’s, and measures to prevent static charge from building up on your body (use of a grounding wrist strap, or frequently touching a grounded object).

...
Hits: 1751
Rate this blog entry:
3

b2ap3_thumbnail_images.jpgAfter more than 35 years in the semiconductor business, custom IC design remains an extremely interesting challenge.

I have always felt the job of a designer is to optimize designs within the process capabilities. The design exercise is still a process of trading off the marketing requirements of function, performance, cost and power. This is especially true in the case of custom design. There is never a perfect answer, only a most right, or said differently, the least wrong. This is fundamentally due to the inherent reliance of statistical process control in discrete manufacturing, such as semiconductor, chemical, genetics and steel foundries.

Designers relying on discreet manufacturing processes need to rely on accurate process models (SPICE for semiconductor). As variance increases, more models or corners are required to represent the process capability.

...
Hits: 797
Rate this blog entry:
1

Posted by on in IC Design

b2ap3_thumbnail_500px-SYNOUT.pngSynopsys Inc. is offering the IC Compiler 2010.03, a physical implementation solution delivering up to 2.5x faster performance on multicorner/multimode (MCMM) designs, and enhanced in-design technology for faster design closure.

IC Compiler's In-Design technology helps prevent late-stage surprises by enabling signoff-accurate static timing analysis, rail analysis and physical verification during design. The new software release has production support for all known 28/32nm design rules for major foundries, with several customer tapeouts underway.

IC Compiler 2010.03 offers performance improvements across the board. It provides 2x faster time to initial floorplan creation and on-demand loading, which offers 2x to 3x faster time to final floorplan creation. IC Compiler 2010.03 also includes 2x faster pre-route feasibility engines and generates interactive reports that help significantly reduce iterative cycles during early stages of design. Faster MCMM scenario processing, core engine improvements and multimode clock tree synthesis deliver faster timing convergence.

...
Hits: 753
Rate this blog entry:
1

b2ap3_thumbnail_download-2_20160720-053121_1.pngFollowing Apple into the IC design market, Google Inc is buying a chip design team company Agnilux Inc., according to reports. The chip design firm was established by former design engineers who had been brought into Apple and then quit to form their own company.

Agnilux was founded in about December 2008 but very little is known about the company except that the name is compound of the Sanskrit word for fire—agni—and the Latin word for light—lux.

It was speculated that the design team could be proposing to reduce server power consumption by designing a multiprocessing ARM chip as a server engine, just as the team when working at Apple is believed to have worked with an ARM architectural license to improve power efficiency and extend battery life.

...
Hits: 805
Rate this blog entry:
3

Latest Article

General Partitioning Guidelines for Validation of Large ASIC Designs On FPGA
Today, a lot of the system-on-chip (SoC) designs depend on Field-...
Continue Reading...

Mailing List

sign up for email updates. We will make sure you are the first to hear Legal news .