Whenever I work on any supply chain process improvement engagement, I intuitively classify them as either “Routine Problem” or a “Non- Routine Problem”. A routine problem is something which has a straightforward simple solution. Other simple way to look at routine problem is where you can apply an algorithm to solve the problem – If your supply side costs are high – A cost based optimization engine used effectively will help. However “Non-Routine Problems” are more abstract, problems where even supply chain veterans do not have a simple explanation. (Another rather easier way of identifying a non-routine problem is when your boss explains you the problem and then – There is a long silence from both sides).
With the increasing complexity owing to global nature of today’s supply chains, more and more supply chain problems are falling in the latter category. Couple this with increasing number of events which can cause volatility in your demand and supply markets. Solving a “Non-Routine” problem requires a strategy unique to the problem. One of the common strategy is to think of the problem in terms of “Waste”. A supply chain is not efficient may be because potentially there is a lot of waste that has been created due to various imbalances, events, customer demands, supply fluctuations etc. That is where data analytics can play a huge role in not only quickly identifying this waste but also anticipating the future waste.
These days I am working on a “Non- Routine” problem – “Improve the production capacity utilization so as to cover up the fixed plant costs and sell the additional delta production (due to improved utilization) for a discount (so as not to increase inventory costs)- And generate extra revenue in the entire process”. I classify this as a non-routine problem because a single algorithm will not be able to solve this problem. Capacity decisions impact all areas of operations management as well as other functional areas of the organization. Also it is important to understand that the focus is on improving utilization (=Actual Output/Design Capacity) and not on improving efficiency – (=Actual Output/Effective Capacity)
...